Versión imprimible Curso Académico
Física Nuclear y de Partículas
Curso 2017/18
1. Datos Descriptivos de la Asignatura
ASIGNATURA: Física Nuclear y de Partículas CÓDIGO: 279194101
- Centro: Facultad de Ciencias
- Titulación: Grado en Física
- Plan de Estudios: 2009 (publicado en 25-11-2009)
- Rama de conocimiento: Ciencias
- Itinerario/Intensificación:
- Departamento/s: - Área/s de conocimiento:
  • Física Aplicada
- Curso: 4
- Carácter: Obligatorio
- Duración: Cuatrimestral
- Créditos ECTS: 6.0
- Horario: http://www.ull.es/view/centros/fisica/Horarios/es
- Dirección web de la asignatura: http://www.campusvirtual.ull.es
- Idioma: Castellano


2. Requisitos para cursar la asignatura
Los alumnos que no superen el 50% de los créditos del módulo de Formación Básica deberán matricularse, en el curso siguiente, de los créditos no superados y sólo podrán matricularse del número de créditos apropiado de este módulo hasta llegar al máximo de 60 créditos


3. Profesorado que imparte la asignatura
Profesor/a Coordinador/a: JOSE MARIA GOMEZ LLORENTE
- Grupo: G1 y G2
- Departamento: Física
- Área de conocimiento: Física Aplicada
- Lugar Tutoría: Despacho 45 (5ª Planta), Facultad de Física
- Horario Tutoría: Martes a Jueves de 17:30 a 19:30
- Teléfono (despacho/tutoría): 922318260
- Correo electrónico: jmgomez@ull.es
- Dirección web docente: http://www.campusvirtual.ull.es
Profesor/a: VICENTE DELGADO BORGES
- Grupo: G1 y G2
- Departamento: Física
- Área de conocimiento: Física Aplicada
- Lugar Tutoría: Despacho 59 (5ª Planta), Facultad de Física
- Horario Tutoría: Martes a Jueves de 17:30 a 19:30
- Teléfono (despacho/tutoría): 922318274
- Correo electrónico: vdelgado@ull.es
- Dirección web docente: http://www.campusvirtual.ull.es


4. Contextualización de la asignatura en el plan de estudio
- Bloque formativo al que pertenece la asignatura: Física Obligatoria
- Perfil profesional:


5. Competencias
Competencias Especificas
[CE1] Conocer y comprender los esquemas conceptuales básicos de la Física y de las ciencias experimentales.
[CE3] Tener una buena comprensión de las teorías físicas más importantes, localizando en su estructura lógica y matemática, su soporte experimental y el fenómeno físico que puede ser descrito a través de ellas.
[CE11] Adquirir destreza en la modelización matemática de fenómenos físicos.
[CE14] Analizar, sintetizar, evaluar y describir información y datos científicos
[CE19] Desarrollar la “intuición” física.
[CE23] Ser capaz de evaluar claramente los órdenes de magnitud, así como de desarrollar una clara percepción de las situaciones que son físicamente diferentes, pero que muestran analogías, permitiendo el uso de soluciones conocidas a nuevos problemas.
[CE24] Afrontar problemas y generar nuevas ideas que puedan solucionarlos
[CE26] Dominar la expresión oral y escrita en lengua española, y también en lengua inglesa, dirigida tanto a un público especializado como al público en general.
[CE28] Adquirir hábitos de comportamiento ético en laboratorios científicos y en aulas universitarias.
[CE29] Organizar y planificar el tiempo de estudio y trabajo, tanto individual como en grupo.
[CE30] Saber discutir conceptos, problemas y experimentos defendiendo con solidez y rigor científico sus argumentos.
[CE31] Saber escuchar y valorar los argumentos de otros compañeros.
[CE33] Ser capaz de identificar lo esencial de un proceso / situación y establecer un modelo de trabajo del mismo.
Competencias Generales
[CG2] Adquirir una sólida base teórica, matemática y numérica, que permita la aplicación de la Física a la solución de problemas complejos mediante modelos sencillos
[CG3] Desarrollar una clara percepción de situaciones aparentemente diferentes pero que muestran evidentes analogías físicas, lo que permite la aplicación de soluciones conocidas a nuevos problemas. Para ello es importante que el alumnado, además de dominar las teorías físicas, adquiera un buen conocimiento y dominio de los métodos matemáticos y numéricos mas comúnmente utilizados.
[CG4] Desarrollar la habilidad de identificar los elementos esenciales de un proceso o una situación compleja que le permita construir un modelo simplificado que describa, con la aproximación necesaria, el objeto de estudio y permita realizar predicciones sobre su evolución futura. Así mismo, debe ser capaz de comprobar la validez del modelo introduciendo las modificaciones necesarias cuando se observen discrepancias entre las predicciones y las observaciones y/o los resultados experimentales.
[CG6] Saber organizar y planificar el tiempo de estudio y de trabajo, tanto individual como en grupo; ello les llevará a aprender a trabajar en equipo y a apreciar el valor añadido que esto supone.
[CG7] Ser capaz de participar en debates científicos y de comunicar tanto de forma oral como escrita a un público especializado o no cuestiones relacionadas con la Ciencia y la Física. También será capaz de utilizar en forma hablada y escrita otro idioma, relevante en la Física y la Ciencia en general, como es el inglés.
[CG8] Poseer la base necesaria para emprender estudios posteriores con un alto grado de autonomía, tanto desde la formación científica, (realizando un master y/o doctorado), como desde la actividad profesional.


6. Contenidos de la asignatura
Contenidos teóricos y prácticos de la asignatura
En el temario que se muestra a continuación las sesiones de problemas se consideran incluidas en los distintos temas con una asignación de tiempo prorrateada dentro del mismo.

- Profesor: Vicente Delgado Borges

TEMA 1: PARTÍCULAS E INTERACCIONES FUNDAMENTALES: CLASIFICACIÓN Y PROPIEDADES.
Interacciones Fundamentales. Teorías Cuánticas de Campos. Descubrimiento de las primeras partículas elementales (electrón, protón, fotón, neutrón, rayos cósmicos, positrón, piones, muones, ...). Unidades naturales. Interacción electromagnética. Partículas virtuales. Interacción fuerte. Hadrones. Partículas extrañas. Resonancias. Interacción débil. Neutrino. Leyes de conservación. Quarks. Color.
Familias de Leptones y Quarks. Teorías gauge. El Modelo Estandar. Partículas supersimétricas.
TEMA 2: SIMETRÍAS Y LEYES DE CONSERVACIÓN. EL MODELO DE QUARKS.
Grupos de Lie. Grupo de traslaciones espaciales y temporales. SO(2). SO(3). SU(2). Transformaciones gauge. Representaciones irreducibles. Casimires. Invariancia de un sistema bajo un grupo de simetrías: Los generadores infinitesimales como constantes de movimiento. Teorema de Racah. Manifestación en el espectro de un sistema de sus propiedades de simetría: Multipletes como bases de las representaciones irreducibles del grupo de simetrías. Isospin. SU(2)f. Hipercarga. Los hadrones como representaciones irreducibles del grupo SU(3)f. Propiedades del grupo SU(3). Representaciones fundamentales. Quarks. Función de ondas de los hadrones (composición en quarks, espín y color). SU(4)f.

- Profesor: José María Gómez Llorente

TEMA 3: CONSTITUYENTES DEL NÚCLEO: LOS NUCLEONES.
Paridad, espín e isoespín. Momentos magnéticos.
TEMA 4: PROPIEDADES GENERALES DE LOS NÚCLEOS.
Radio nuclear. Energía de enlace y defecto de masa. Momento angular total y espín nuclear. Multipolos eléctricos y magnéticos. Estabilidad nuclear.
TEMA 5: SISTEMA DE DOS NUCLEONES: EL DEUTERÓN.
Multipolos eléctricos y magnéticos del sistema de dos nucleones. Interacción espín-órbita. Datos experimentales para el deuterón. Modelo del pozo cuadrado para el deuterón. La función de onda del deuterón. Estados del continuo: dispersión. La interacción nucleón-nucleón. Potenciales fenomenológicos. Interacambio de mesones y potencial de Yukawa
TEMA 6: MODELOS NUCLEARES.
El modelo de la gota líquida. Modelo del gas de Fermi. Modelo de capas: configuraciones nucleares. Movimientos colectivos del núcleo: vibraciones y rotaciones.
TEMA 7: DECAIMIENTO RADIACTIVO Y REACCIONES NUCLEARES.
Vida media. Decaimientos alfa, beta y gamma. Reacciones nucleares. Fisión nuclear.
Actividades a desarrollar en otro idioma
- Profesor/a:
-Temas (epígrafes):


7. Metodología y volumen de trabajo del estudiante
Descripción
La docencia de esta asignatura, que es de carácter presencial, se impartirá mediante exposición de contenidos teóricos en el aula y planteamiento de ejercicios y problemas prácticos que ayuden a asimilar los conceptos introducidos. Se intentará complementar las lecciones en el aula con el uso de medios audiovisuales y la utilización del Aula Virtual de la asignatura. Asimismo se pretende estimular la participación activa del estudiante en las clases, particularmente en el proceso de resolución de los problemas prácticos propuestos. Proponemos dedicar el 50% de la carga lectiva de la asignatura a clases teóricas y el otro 50% a clases prácticas.


Actividades formativas en créditos ECTS, su metodología de enseñanza-aprendizaje y su relación con las competencias que debe adquirir el estudiante
Actividades formativas Horas presenciales Horas de trabajo autónomo Total Horas Relación con competencias
Clases teóricas  26.00      26  [CG2], [CG3], [CG4], [CG6], [CG7], [CG8], [CE1], [CE3], [CE11], [CE14], [CE19], [CE23], [CE24], [CE26], [CE28], [CE29], [CE30], [CE31], [CE33]
Clases prácticas (aula / sala de demostraciones / prácticas laboratorio)  15.00      15  [CG2], [CG3], [CG4], [CG6], [CG7], [CG8], [CE1], [CE3], [CE11], [CE14], [CE19], [CE23], [CE24], [CE26], [CE28], [CE29], [CE30], [CE31], [CE33]
Realización de seminarios u otras actividades complementarias  15.00      15  [CG2], [CG3], [CG4], [CG6], [CG7], [CG8], [CE1], [CE3], [CE11], [CE14], [CE19], [CE23], [CE24], [CE26], [CE28], [CE29], [CE30], [CE31], [CE33]
Realización de exámenes  4.00      4  [CG2], [CG3], [CG4], [CG6], [CG7], [CG8], [CE1], [CE3], [CE11], [CE14], [CE19], [CE23], [CE24], [CE26], [CE28], [CE29], [CE30], [CE31], [CE33]
Estudio y trabajo autónomo en todas las actividades     90.00   90  [CG2], [CG3], [CG4], [CG6], [CG7], [CG8], [CE1], [CE3], [CE11], [CE14], [CE19], [CE23], [CE24], [CE26], [CE28], [CE29], [CE30], [CE31], [CE33]
Total horas  60   90   150 
Total ECTS  6 


8. Bibliografía / Recursos
Bibliografía básica
W. Greiner and B. Müller. Quantum Mechanics: Symmetries, Ed. Springer-Verlag.
C. A. Bertulani, Nuclear Physics in a Nutshell, Princeton University Press (2007).
S.S.M Wong, Introductory Nuclear Physics, Wiley-VCH, (2004).
Bibliografía complementaria
B. R. Martin and G. Shaw, Particle Physics, Ed. J. Wiley and sons.
F. Halzen and A. D. Martin. Quarks and Leptons: An Introductory Course in Modern Particle Physics, Ed. J. Wiley and sons.
Introductory Nuclear Physics, Wiley (1987).
Luc Valentin. Subatomic Physics and Particles, Ed. J. Wiley and sons.
M.A. Preston y R.K. Bhaduri. Structure of the nucleus. Ed. Addison-Wesley
Otros recursos
Biblioteca de la Facultad de Física
Unidad de Docencia Virtual de la Universidad de la Laguna: http://campusvirtual.ull.es



9. Sistema de evaluación y calificación
Descripción
La evaluación continua del alumnado se llevará a cabo a lo largo del curso mediante controles escritos realizados en horario de clase. También podrán proponerse problemas y ejercicios para su resolución por los alumnos. La calificación final, p, se obtiene mediante la aplicación de la siguiente fórmula:
p=z+0.4 c (1-z/10),
donde c es la calificación de la evaluación continua (en escala de 0-10) y z es la del examen final (en escala 0-10). La aplicación de la ecuación anterior se realizará siempre que c sea mayor o igual que 5 y z mayor que 10/3. En caso contrario p será igual a z.
La calificación de la evaluación continua (c) se mantiene durante las distintas convocatorias del mismo curso académico.
La prueba z recupera todas las competencias de las pruebas previas de evaluación que no hayan sido superadas o a las que los alumnos no hayan podido presentarse.



Estrategia Evaluativa
TIPO DE PRUEBA COMPETENCIAS CRITERIOS PONDERACIÓN
Pruebas objetivas  [CG2], [CG3], [CG4], [CG6], [CG7], [CG8], [CE1], [CE3], [CE11], [CE14], [CE19], [CE23], [CE24], [CE26], [CE28], [CE29], [CE30], [CE31], [CE33]   Ver la descripción detallada en el apartado anterior   100% 


10. Resultados de Aprendizaje
 * Adquirir una sólida base teórica, matemática y numérica, que permita la aplicación de la Física a la solución de problemas complejos mediante modelos sencillos.
* Poseer la base necesaria para emprender estudios posteriores con un alto grado de autonomía, tanto desde la formación científica, como desde la actividad profesional.
* Afrontar problemas y generar nuevas ideas que puedan solucionarlos
 


11. Cronograma / calendario de la asignatura
Descripción
 * La distribución de los temas por semana es orientativo, puede sufrir cambios según las necesidades de organización docente. 

Primer Cuatrimestre
SEMANA Temas Actividades de
enseñanza aprendizaje
Horas
de trabajo
presencial
Horas
de trabajo
autónomo
Total
Semana 1:  1   Todas las de la Sección 7   5.00   8.00   13 
Semana 2:  1 - 2   Todas las de la Sección 7   5.00   8.00   13 
Semana 3:  2   Todas las de la Sección 7   6.00   9.00   15 
Semana 4:  2   Todas las de la Sección 7   6.00   9.00   15 
Semana 5:  2

Control 1 
 Todas las de la Sección 7   6.00   9.00   15 
Semana 6:  3   Todas las de la Sección 7   5.00   8.00   13 
Semana 7:  4   Todas las de la Sección 7   6.00   9.00   15 
Semana 8:  5   Todas las de la Sección 7   6.00   9.00   15 
Semana 9:  6   Todas las de la Sección 7   5.00   8.00   13 
Semana 10:  7

Control 2 
 Todas las de la Sección 7   6.00   9.00   15 
Semana 11:              0 
Semana 12:              0 
Semana 13:              0 
Semana 14:              0 
Semana 15:              0 
Semanas 16 a 18:  Evaluación   Evaluación y trabajo autónomo del alumno para la preparación de la evaluación...   4.00   4.00   8 
Total horas 60 90 150


Fecha de última modificación: 21-07-2017
Fecha de aprobación: 21-07-2017